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Abstract—Ghidra’s inherent support for many different CPU
architectures, executable formats, and user-developed plugins and
softwares lends itself to be very strong in the inspection of a
wide variety of software. While many plugins for Ghidra exist
to enhance manual software reverse engineering, few exist to
assist in the automation of such analysis. Where Schadenfreude
first failed to meet the generalised needs for automation, the
“Resurrection” branch promises to improve by integrating more
generalised program analysis techniques as API. While the
software is not yet suitable for general use, it demonstrates
powerful functionality across programs whose control flow graph
is acyclic. In future iterations, not only will these building blocks
provide future researchers with the means to use these techniques
in their own contexts, but also will improve the efficacy and
scope of the existing analyses provided with the first iteration of
Schadenfreude.

I. INTRODUCTION

The open source software reverse engineering and vulner-
ability research communities are strong, but limited; with
few automation assistants being published, a majority of this
research is conducted manually or with arcane and highly
specialised software which has been abused, misused, or
modified to match the needs of the user.

With the release of the National Security Agency’s soft-
ware reverse engineering suite Ghidra [1] in 2019, a toolkit
became available to the open source community that was
well-reviewed and developed by a well-known organisation.
This had obvious advantages: Ghidra is free (which sup-
ports smaller organisations and developers), it is open source
(meaning the public can review it for errors), and can be
extended rather simply. The way in which it was developed
allowed users to develop extensions to support both automated
analysis and manual review, and, as a key feature, provides
an intermediary representation language which is consistent
between CPU architectures and allows for more generalised
program analysis.

Unfortunately, the software as released is mostly oriented
towards manual review. Software can be developed to extend
the automated analysis, but is mostly oriented towards control
flow and data flow analysis with no awareness of contraints
on the data or means by which to notate them. Viewing the
source code and behaviour of the internal API, it is clear that
the software was developed to permit this kind of analysis,
but the public releases were not shipped with them. Thus,
Ghidra’s existing automated analysis is without regard to state
and unconstrained, leaving researchers to mostly be restricted

to manually inspecting the program after analysis to determine
the behaviour themselves, when, in reality, many of the basic
features researchers look for could be automatically found
most of the time.

Schadenfreude was developed with one intention: to as-
sist researchers in their analysis of complex software. As
the original iteration [2] was developed with vulnerability
researchers as the primary audience and userbase, the name
Schadenfreude was chosen; the discovery of a vulnerability
present in a software declared to be ”secure” evokes elation
from the achievement, the completion of ironic justice, and the
joy in the misfortune of those believing it to be safe. To match
the name, this iteration focuses less on specific features and
instead provides an API through which to automate more of
the trivial program analysis, allowing vulnerability researchers
and reverse engineers to automate their common tasks and
reduce the complexity of their more advanced research. This
manifested with the use of the Z3 theorem prover and some
basic program analysis to convert functions present in executa-
bles into a collection of assertions which modeled both data
and control flow.

A. Contributions of Schadenfreude

There are two main contributions in this iteration of
Schadenfreude: constrained bitvector representations of varn-
odes1 and control flow modeling with Z3. Constrained bitvec-
tors are fixed-length bit representations of values which may
not necessarily have known concrete values such that indi-
vidual bits or ranges of bits are restricted to specific values
or by predicates which must evaluate to true for valid values
for those bit ranges. These values are implemented using Z3’s
theory of bitvectors and models for Pcode [3] operations were
defined as Z3 bitvector operations.

Control flow modeling is the process by which the control
flow of a program is translated from instructions, to blocks of
instructions and under what conditions one block of instruc-
tions leads to another (the “flow”), and finally into predicates
in first-order logic which can be fed to Z3 for solving whether
blocks are reachable and how it impacts and is impacted by the
state of the program’s data. As part of the modeling process,
the conditions under which each block leads to another and
thereby how the bitvectors representing data are constrained
must be discovered in a process known as constraint discovery.

1The unit of data in Ghidra Pcode [3]
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This process is crucial as, without it, control flow would be
effectively unconstrained as there would be no indication of
what cases would lead to a specific block of code being
reached.

As an example of constraint discovery, consider the follow-
ing function f :

f(a):
// position 0
if a == 0:

c = 6 // position 1
else if a % 3 == 0:

c = 15 // position 2
else:

c = 9 // position 3
return c // position 4

Fig. 1. An example program

In positions 0 and 4, a is unconstrained; there is no inherent
property of a which must be true for the program to have
reached either of those states assuming valid control flow
was followed. On the other hand, at position 1, a is strictly
equal to zero; at position 2, a is strictly non-zero and a ≡ 0
(mod 3); at position 3, a is non-zero and a 6≡ 0 (mod 3).
Control flow, in this way, can be used to discover constraints
on varnodes and thus improve the effectiveness of stateful
program analysis. The results of constraint discovery stage
will be associated to varnodes such that they can be used by
researchers and analysis softwares alike to have control flow
relevant information on data in various contexts.

These contributions are critical as manual reviewers can
have more context for a specific region and SMT solvers (e.g.
Z3 [4], the solver used by Schadenfreude) or other advanced
program analysis softwares can be used by researchers to
develop analyses specific to their targets with significantly
more capabilities than what are provided by Ghidra alone.

B. Contributions as a Result of Schadenfreude’s Development

1) Z3 Contributions: Schadenfreude’s development led to
the contribution of nearly three thousand lines of source
code to Z32. These changes introduced a Java generic-based
typesystem that both clarified and enforced datatype safety for
statements in Z3 generated as a result of API calls both for
types that are predefined and those defined at runtime. This
was a critical improvement for Schadenfreude (to keep type
consistency while generating data flow graphs) but also served
as a general improvement for all uses of Z3 with minimal
breaking changes.

2) Ghidra Contributions: The Sleigh language3 definition
for RISCV had inconsistencies in Pcode operation definitions
that led to several issues during Schadenfreude testing. While
not yet published (as these changes are still being verified),

2https://github.com/Z3Prover/z3/pull/4832
3https://ghidra.re/courses/languages/html/sleigh.html

these changes improve the effectiveness of Ghidra when
analysing targets compiled for RISCV.

C. Improvements Subsequent to Initial Presentation

At the time of the initial presentation, non-trivial acyclic
control flow in programs was not possible to evaluate due
to faulty modeling of control flow in Z3. The implications
discussed in III-B were implemented to account for this,
although Schadenfreude is still restricted to acyclic control
flow graphs. Attempts were made to overcome the acyclic
restriction, but this was simply not possible to accomplish in
a week and is provably not solvable in the general case.

A representation for memory was implemented which al-
lows Z3 to perform basic logic on stack operations, though
heap is still not supported; this allowed for meaningful opera-
tions on buffers, although this is not demonstrated as it is still
very unstable.

Z3 was also improved to be more ergonomic and precise,
as mentioned in I-B1, which allows users of Schadenfreude to
use the models of programs more effectively.

II. RELATED WORK

Fig. 2. Precisely what we wish to avoid. Source: [5]

A. angr [6] and related

angr, describing itself as a “both static and dynamic sym-
bolic (“concolic”) analysis [engine],” is the closest approxima-
tion to what this iteration Schadenfreude attempts to enable.
angr uses the Keystone engine [7] for (dis)assembly, Claripy
[8] for solving, and VEX IR [9] for intermediary representa-
tion; as requirements fulfilled by Keystone and VEX IR for
angr are fulfilled by Ghidra and this iteration of Schadenfreude
does not intend to handle solving, what remains is the con-
straint discovery and the implementation of SimEngine [10]
to evaluate over the resulting constrained bitvectors.

As outlined in [6], Schadenfreude’s approach will largely
be based on graph-based vulnerability discovery and value-set
analysis (though, instead of value sets, Schadenfreude uses
constraint-set analysis with its bitvectors).

https://github.com/Z3Prover/z3/pull/4832
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B. Ponce [11]

While angr attempts to be as general as possible in its
implementation, Ponce is dedicated to simplifying symbolic
execution and taint analysis specifically for reverse engineers.
Developed as a plugin for IDA Pro, this software is limited
to those who subscribe to IDA Pro and is thus not accessible
to those who are not sponsored, able, or willing to pay for a
subscription to IDA Pro [12]. Additionally, Ponce is limited to
x86 (32- and 64-bit) and is mostly helpful for manual review.
Unlike angr, it is quite ergonomic and simple analyses with
Schadenfreude should be similarly simple to develop or use.

III. METHOD

A. Data Modeling

1) Constrained Bitvectors: As discussed in the introduc-
tion, the basic unit for all improvements will be the constrained
bitvector. Similar to the three-value bitvector posed by existing
program analysis plugins for Ghidra [13], these bitvectors
represent both concrete and unknown states. Unlike basic
three-value bitvectors, constrained bitvectors have no concrete
representation and instead are represented by a set of assertions
about ranges of bits.

The initial attempt to implement this datatype at the bit-
level and attach it to existing varnodes was not successful, so
instead custom Pcode operations were defined which assigned
constraints to varnodes wherever control flow entered a region
where a varnode was constrained. The results of this iteration
were studied, then necessary changes were made such that
constrained bitvectors were represented using Z3’s theory of
bitvectors instead of a custom implementation, which, as a
side-effect, removed the need for custom Pcode operations.
This was quite convenient as Ghidra has no mechanism by
which to make inserted Pcode operations persistent4.

Now that bitvectors were represented by Z3’s theory of
bitvectors, keeping track of constraints on bitvectors defined
by uses of a constrained bitvector was no longer necessary to
implement within Schadenfreude. This improvement positively
impacted soundness as it no longer relied on a custom im-
plementation and instead on a well-vetted implementation of
the theory of bitvectors. Additionally, this trivialised symbolic
memory.

2) Symbolic Memory: Now that bitvectors were represented
by Z3’s theory of bitvectors, memory could be represented as
a two-dimensional Z3 array5 which is implicitly sparse and
indexed exactly as documented by Pcode’s LOAD operation6.
This memory could be mutated by passing the previous
instruction’s memory to the current, making memory state
dependent on control flow. Unfortunately, this flow-based
definition means that symbolic memory may be inconsistent
in multithreaded applications as traditional data flow may
not fully represent this [14]. Multithreaded applications will
simply remain out of scope at this time as a solution for

4https://github.com/NationalSecurityAgency/ghidra/issues/401
5https://rise4fun.com/z3/tutorialcontent/guide#h26
6https://ghidra.re/courses/languages/html/pcodedescription.html#cpui load

this single problem may be more difficult to implement and
discover than the entireity of the changes proposed for this
iteration of Schadenfreude.

Additionally, compared to a previous iteration, the memory
representation no longer need to be endianness-aware. While
relatively undocumented, some investigation showed that
Ghidra implemented LOAD and STORE operations strictly
using word-sized bitvectors. To implement this change, all that
was necessary was to use the Ghidra API to discover the word
size of memory.

3) Constraint Discovery: Helpfully, Ghidra provides a ma-
jority of the infrastructure to discover constraints via the
CBRANCH (conditional branch) Pcode operation7 wherein
a boolean varnode is provided to input1. In this case, we
can simply resolve the Pcode operations which led to the
value of input1 and thus resolve the predicate itself that
actually decided the result of the conditional branch. Thus,
our constraints can be represented by assertions on the value
present in input1.

Pcode which is provided as the result of decompilation in
Ghidra has their own form of representing a varnode which
has various different sources according to conditions - but does
not include the conditions themselves (the MULTIEQUAL
Pcode operation, which is equivalent to a phi node in single
static assignment theory8). Each of the inputs provided to the
MULTIEQUAL operation can be sourced to a specific block,
and, due to an undocumented quirk of the Ghidra decompiler,
inputs are in order of most to least constrained (i.e. in order of
the number of branches followed in order to define the input)9.
Using the rules for control flow defined in III-B, the output
of a MULTIEQUAL operation can be defined by a chain of
if-then-else statements whose conditions are based on whether
the block which defines the input was hit. For example, with
the predicate function hit which accepts a block number as
an argument and returns a boolean indicating whether or not
the block was hit, the return value of the program in figure 1
can be expressed as:
(ite hit(2) 15 (ite hit(3) 9 6))

B. Execution Modeling

In order to inform Z3 how to evaluate control flow and
thereby data flow, execution must be modeled as a collection
of implications on data based on whether blocks are hit. For
example, consider the program in figure 1; operations are
representable as implications based on whether or not a block
was hit, resulting in the following set of implications:
(=> hit(1) (= c_1 6))
(=> hit(2) (= c_2 15))
(=> hit(3) (= c_3 9))
(=> hit(4) (= ret (ite hit(2) c_2

(ite hit(3) c_3 c_1))))

7https://ghidra.re/courses/languages/html/pcodedescription.html#cpui
cbranch

8https://ghidra.re/courses/languages/html/additionalpcode.html
9This is because MULTIEQUAL inputs are discovered by BFS, which is

coincedentally exactly the method needed to discover most branches followed.
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With operations now represented as the result of implica-
tions of blocks being hit, control flow can be represented as
the implications of edges being followed on blocks being hit10.
To accomplish this, the following rules were derived:

1) A given edge being followed implies both the source
block and the destination block are hit.

2) A given block being hit implies exactly one of the input
edges were followed, if it has any.11

3) A given block being hit implies exactly one of the output
edges are followed, if it has any.

4) A given edge being followed implies the constraint on
that branch evaluates to true.

Using these rules, f as defined in figure 1 can now be
expressed as the following collection of assertions12:
; operations
(=> hit(1) (= c_1 6))
(=> hit(2) (= c_2 15))
(=> hit(3) (= c_3 9))
(=> hit(4)

(= ret (ite hit(2) c_2
(ite hit(3) c_3

c_1))))

; control flow
(=> hit(0) (one-of edge(0 1)

edge(0 2)
edge(0 3)))

(=> edge(0 1) hit(0))
(=> edge(0 1) hit(1))
; ... more of rule 1
(=> edge(0 1) (= a 0))
(=> edge(0 2) (and (= (mod a 3) 0)

(not (= a 0))))
(=> edge(0 3) (not (or (= (mod a 3) 0)

(= a 0))))

(=> hit(1) (one-of edge(0 1)))
(=> hit(1) (one-of edge(1 4)))
(=> edge(1 4) hit(1))
(=> edge(1 4) hit(4))
; ... same for 2, 3

(=> hit(4) (one-of edge(1 4)
edge(2 4)
edge(3 4)))

10By stating everything in terms of implications based on uninterpreted
predicates, it is possible to set Z3 to use Horn logic and prove some inductive
facts, though this feature was not used for this iteration of Schadenfreude.
For more information, see https://rise4fun.com/Z3/tutorial/fixedpoints. This
mechanism will likely be used to unroll cycles in the future.

11This rule and the next restricts the current version of Schadenfreude to
control flow graphs which are strictly directed acyclic, but this can (and will)
be changed in the future.

12This is informally expressed; the actual implementation uses quantifiers to
perform the one-of operation and constant functions to represent whether
blocks/edges are hit/followed. This representation should be interpreted as
descriptive, not prescriptive.

Then, to evaluate, hit(0) and hit(4) are asserted as
true. An assertion to the value of a can be made, and, simply
by acquiring the model resolved by Z3, one can evaluate ret.
Moreover, one can prove the functional equivalency of this
function to another by simply asserting that inputs and return
values of this function are equivalent to another13.

IV. DEMONSTRATION

A demonstration has been prepared for reproducing the
claims made in III which can be viewed by execut-
ing demo.sh provided in the schadenfreude.tar.gz
sources archive.

In order to demonstrate the soundness of Schadenfreude
across multiple architectures, the demonstration will identify
and use all compilers on the system. To try Schadenfreude
with another architecture, simply install its cross-compiler.
Schadenfreude has primarily been tested with x86 64-linux-
gnu-gcc, aarch64-linux-gnu-gcc, and riscv64-linux-gnu-gcc
(see I-B2 for details on RISCV programs), though should
be theoretically compatible with any architecture which has
a correct Sleigh language implementation for Ghidra.

This demonstration implements the following use cases of
Schadenfreude:

1) Evaluation of functions present in an executable for
arbitrary valid inputs

2) Proving statements about data flow based on control flow
3) Disproving statements about data flow based on control

flow
4) Proving statements about control flow based on data flow
5) Functional equivalency proofs
The demonstration uses the following C source, compiled

as part of a shared object library:
#include <stdio.h>

int diamond(int x, int y) {
int c = x + y;
if (c == 0) {

return c;
} else if (x == 5) {

c += 15;
} else if (y == 5) {

c += 32;
puts("y == 5");

} else {
c += 6;

}
return c;

}

For more information about how this demonstration
implements each of the use cases listed, please run
the demonstration or view demo.log, provided in the
schadenfreude.tar.gz sources archive.

13While not explicitly discussed here, an instance of this can be found in
the demonstration code.
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V. FINAL THOUGHTS

While Schadenfreude: Resurrection is not quite in the state
that I had hoped it would be at this point, I have a better
respect for the complexity of using SMT solvers in program
analysis and believe the submission provided is demonstrably
quite powerful. In its current state, it is extremely effective
against functions whose control flow graphs are acyclic. This
is, unfortunately, very few programs.

I developed this for my own projects, and will continue to
develop it further. My likely next step is control flow graph cy-
cle unrolling, which frequently leads to path explosion. Then,
in the next iteration, implementing some basic archetypes for
cycles (for with bounds, while, do-while, etc.), and when that
inevitably encounters an issue, I’ll look into a solution, so on
and so forth. I recognise that, because of the halting problem,
I’ll never have a general solution – but that’s not going to stop
me from shaving down the unsound/incomplete cases!
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