
AFLrustrustA and 
LibAFL_libFuzzerB

AAndrea Fioraldi1, Dominik Maier2, Dongjia Zhang3, Addison Crump4

BAddison Crump4, Andrea Fioraldi1, Dominik Maier2, Dongjia Zhang3

1EURECOM, 2Google Inc., 3The University of Tokyo, 4CISPA Helmholtz Center for Information Security



LibAFL

● Fuzzer framework

● Written in Rust

➢ Standardised high-performance components

➢ Highly configurable for creating custom runtimes



Motivation and Design

● AFL++ and LibAFL consistently top Fuzzbench results

● We want to demonstrate LibAFL’s flexibility

● We want to make LibAFL more widely used

➢ Write runtimes for popular fuzzers in LibAFL



AFLrustrust



AFLrustrust: a shim for AFL++

● AFL++-compiled binaries export data for AFL++

● LibAFL can observe this feedback

➢ Use LibAFL’s components to speed up fuzzing

➢ User does not need to modify fuzzing infrastructure



AFLrustrust design

● Instrumentation provided by AFL++’s LLVM pass

● Edge coverage + cmplog via shared memory

● AFL-style forkserver implemented in LibAFL

● Corpus scheduling with the EXPLORE power schedule

➢ Effectively: AFL++, but written with LibAFL components



AFLrustrust’s differences

● Redqueen disabled (experimental support in LibAFL)

● Coverage map acceleration with SIMD

● MOpt enabled by default

➢ AFL++ implementation in <400 lines with LibAFL



LibAFL_libFuzzer



libFuzzer

● libFuzzer by LLVM is the de facto standard for in-process fuzzing

● Shipped with LLVM’s compiler-rt

● Depends on default LLVM instrumentation (-fsanitize-coverage…)

● Compatible with most LLVM-based compilers

➢ Entered maintenance mode in 2022



LibAFL_libFuzzer: a shim for libFuzzer

● Ongoing project to build a full replacement for libFuzzer

● Intentionally constrained to libFuzzer instrumentation

● Fully compatible with libFuzzer flags and support

➢ Utilises LibAFL’s components to improve fuzzing performance



LibAFL_libFuzzer’s differences

➢ Power scheduling/minimising algorithm from AFL++

➢ GRIMOIRE-style structured analysis and mutation

➢ AFL-style cmplog

○ Some libFuzzer comparison interceptors not implemented

○ Mutations optimised for string inputs not implemented



Concluding Thoughts



LibAFL, and why we use it

● Frequent updates and community fixes

● Fast implementations of bleeding edge fuzzing techniques

● Common baseline for comparing and combining strategies

➢ Ask us about how we use LibAFL to evaluate!



So, what’s next from us?

● Continued development of LibAFL_libFuzzer

○ Windows/macOS/etc.

○ Comparison interceptors

○ Plug-and-play Rust fuzzer support

● RedQueen stabilisation



Questions?


