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LibAFL

● Fuzzer framework

● Written in Rust

➢ Standardised high-performance components

➢ Highly configurable for creating custom runtimes



Motivation and Design

● AFL++ and LibAFL consistently top Fuzzbench results

● We want to demonstrate LibAFL’s flexibility

● We want to make LibAFL more widely used

➢ Write runtimes for popular fuzzers in LibAFL



AFLrustrust



AFLrustrust: a shim for AFL++

● AFL++-compiled binaries export data for AFL++

● LibAFL can observe this feedback

➢ Use LibAFL’s components to speed up fuzzing

➢ User does not need to modify fuzzing infrastructure



AFLrustrust design

● Instrumentation provided by AFL++’s LLVM pass

● Edge coverage + cmplog via shared memory

● AFL-style forkserver implemented in LibAFL

● Corpus scheduling with the EXPLORE power schedule

➢ Effectively: AFL++, but written with LibAFL components



AFLrustrust’s differences

● Redqueen disabled (experimental support in LibAFL)

● Coverage map acceleration with SIMD

● MOpt enabled by default

➢ AFL++ implementation in <400 lines with LibAFL



LibAFL_libFuzzer



libFuzzer

● libFuzzer by LLVM is the de facto standard for in-process fuzzing

● Shipped with LLVM’s compiler-rt

● Depends on default LLVM instrumentation (-fsanitize-coverage…)

● Compatible with most LLVM-based compilers

➢ Entered maintenance mode in 2022



LibAFL_libFuzzer: a shim for libFuzzer

● Ongoing project to build a full replacement for libFuzzer

● Intentionally constrained to libFuzzer instrumentation

● Fully compatible with libFuzzer flags and support

➢ Utilises LibAFL’s components to improve fuzzing performance



LibAFL_libFuzzer’s differences

➢ Power scheduling/minimising algorithm from AFL++

➢ GRIMOIRE-style structured analysis and mutation

➢ AFL-style cmplog

○ Some libFuzzer comparison interceptors not implemented

○ Mutations optimised for string inputs not implemented



Concluding Thoughts



LibAFL, and why we use it

● Frequent updates and community fixes

● Fast implementations of bleeding edge fuzzing techniques

● Common baseline for comparing and combining strategies

➢ Ask us about how we use LibAFL to evaluate!



So, what’s next from us?

● Continued development of LibAFL_libFuzzer

○ Windows/macOS/etc.

○ Comparison interceptors

○ Plug-and-play Rust fuzzer support

● RedQueen stabilisation



Questions?


