AFLrustrust® and
LibAFL LlibFuzzer®

AAndrea Fioraldi', Dominik Maier?, Dongjia Zhang®, Addison Crump*
BAddison Crump® Andrea Fioraldil, Dominik Maier?, Dongjia Zhang®

LEURECOM, 2Google Inc., 3The University of Tokyo, “CISPA Helmholtz Center for Information Security

LibAFL

e Fuzzer framework
e Writtenin Rust

> Standardised high-performance components

v

Highly configurable for creating custom runtimes

Motivation and Design

e AFL++ and LibAFL consistently top Fuzzbench results
e Wewant todemonstrate LibAFLs flexibility
e We want to make LibAFL more widely used

> Write runtimes for popular fuzzers in LibAFL

AFLrustrust

AFLrustrust: a shim for AFL++

e AFL++-compiled binaries export data for AFL++
e LibAFL can observe this feedback

> Use LibAFLs components to speed up fuzzing

v

User does not need to modify fuzzing infrastructure

AFLrustrust design

e Instrumentation provided by AFL++’s LLVM pass

e FEdge coverage + cmplog via shared memory

e AFL-style forkserver implemented in LibAFL

e Corpus scheduling with the EXPLORE power schedule
> Effectively: AFL++, but written with LibAFL components

AFLrustrust’'s differences

e Redqueen disabled (experimental support in LibAFL)
e Coverage map acceleration with SIMD

e MOptenabled by default
> AFL++ implementation in <400 lines with LibAFL

S
)
N
N
-
L
-
l—
-
TS
<<
-
-

libFuzzer

e libFuzzer by LLVM is the de facto standard for in-process fuzzing
e Shipped with LLVM’s compiler-rt

e Depends on default LLVM instrumentation (-fsanitize-coverage...)
e Compatible with most LLVM-based compilers

> Entered maintenance mode in 2022

LibAFL_libFuzzer: a shim for libFuzzer

e Ongoing project to build a full replacement for libFuzzer
e Intentionally constrained to libFuzzer instrumentation
e Fully compatible with libFuzzer flags and support

> Utilises LibAFLs components to improve fuzzing performance

LibAFL_libFuzzer's differences

v

Power scheduling/minimising algorithm from AFL++
GRIMOIRE-style structured analysis and mutation
AFL-style cmplog

o Some libFuzzer comparison interceptors not implemented

Mutations optimised for string inputs not implemented

Concluding Thoughts

LibAFL, and why we use it

e Frequent updates and community fixes
e Fastimplementations of bleeding edge fuzzing techniques
e Common baseline for comparing and combining strategies

> Ask us about how we use LibAFL to evaluate!

So, what's next from us?

e Continued development of LibAFL_libFuzzer
o Windows/macOS/etc.
o Comparison interceptors
o Plug-and-play Rust fuzzer support

e RedQueen stabilisation

Questions?

